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Note 

Generalized Solution of the Glow Curve Integral 
Applied to Nonlinear Heating Rates 

Evaluation of the integral 

F,(~, E) = it exp( --E/kT) df ’ (1) ‘IJ 

is of general importance in the interpretation of thermal disorption of gases and 
other “glow-curve” data [l-5]. k is the Boltzmann constant in ev per degree. Since 
it has been conventional to use a linear heating rate (7’ = T,, + fit) to obtain data 
as a function of temperature, the procedure has been to factor out l//3 leaving the 
modified form 

F(T, E) - F(T, , E) = iT exp(-E/kT’) dT’, (2) 
TO 

and to treat F(T, , E) as a constant when it cannot be neglected in comparison 
with F(T, E). 

Chen [I] considered the asymptotic series solution in powers of (kT/E) for 
F(T, E) and has provided appropriate criteria for truncation and error estimation. 

Redhead [3] has chosen an alternative approach which leads to a closedform 
solution of the original integral (1) by taking a heating rate in which the inverse 
temperature is linear in time. Although this may prove experimentally impractical- 
particularly for extended temperature intervals-it does suggest a generalized 
approach for nonlinear monotonic heating curves. The approach this paper offers 
should have special appeal for experiments where less restrictive temperature 
programming is desirable and it is possible to continuously monitor the time- 
temperature relationship. 

To see the effect of various heating rates upon the integral-and to open the 
possibility of simplifying it by adjusting the heating rate-a general form is needed. 
One such general solution is obtained by using x = l/T and repeatedly integrating 
by parts, giving 

FL& E) = [exp(-xE/k)] B(x, E)I~%o 
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where 

B(x, E) = - 2 (k/E)” d”t/dx”. 
?L=l 

(4) 

This will reduce to the asymptotic series treated by Chen, when the derivatives 
of 

t = u/m - To) = (l/x - TOP 

are substituted into (4). From (4) it is now clear that Redhead’s heating curve is the 
simplest possible, as it leaves but one term in (4). But Eq. (4) can now show the 
effect of a general monotonic curve-say, one resulting from a single heater power 
setting. A monotonic time-temperature curve may be fitted by a series, as 

t = c bj(lO%)j, 
j=O 

(5) 

where the bj are evaluated from a difference table [6] of values of time taken at 
regular intervals of 103/T. J cannot be larger than the number of data points 
considered. Usually a smaller value will be dictated by the noise in the data, which 
will overshadow the “ideal values” in the table. J is then taken as the order of 
difference just prior to the onset of randomness [7, p. 1501 

In the experimental work prompting this investigation, for example, a single 
heater setting produced a temperature-time curve which required only three 
terms (J = 2) to fit a range of interest extending over some 300”K, with a maximum 
deviation of less than 2%. When the range of interest is smaller than the total 
temperature sweep, the heater setting can be chosen to optimize the shape of the 
sweep within that range, and so keep the number of terms small. 

With t now given by Eq (5), the derivatives are 

$$ = i 103$+-j!/(j - $1, 
j=n 

and can be substituted into (4) to yield 

B(x, E) = - i i (k/E)n 103jb&“j!/( j - n) ! 
n=1j=n 

It is useful to rearrange them into simple powers of x. Setting the terms of the 
double sum of (7) out with one dummy index for the row and the other for the 
column, it becomes clear that simple powers of x are shared by elements along 
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diagonals. To separate these out, substitute dummy indices with m replacingj - n, 
yielding 

J-l 

B(x, E) = - c (103x)m $ 
??L=O / 

bj(l03k,E)~-"j!,m!~ 
I' 

(8) 
j=m+1 

Given the value of E, the set of factors in the brackets may be evaluated once, 
and treated as constants. On the other hand, in situations where E is being sought 
by some iteration process performed upon the data as analyzed by Eq (I), a useful 
first step is to treat 103k/E as small (note 103k/E FZ .l when E is in the one ev 
range), neglect higher powers, and factor the unknown E out into the preexponen- 
tial constant. Plots so made could furnish a good zero-th order value for E. 

In conclusion, this paper has offered a more general solution to the integral of 
Eq (l), and a method of applying that solution to general, monotonic heating 
curves. Thus, even a curve generated by a single heater power setting may result 
in a finite series solution of only two or three terms. 
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